
Conditionals vs. Composition
Eric Armstrong
2 Sep 2008

Summary:
This article is part of a series that describes the 20-some decisions that face every DITA project. The goal is
to identify the pros and cons for each decision and, where warranted, record the known "best practices"
around each decision point. (Most of them can be covered in a single article. But a couple, like this one, are
intricate enough to require an article of their own.) The series concludes by considering whether DITA would
benefit from the creation of a specialization for a "Decision Guide".

Acknowledgments:
This series of articles was motivated, in part, by a round table discussion at the July 2008 meeting of the
Silicon Valley DITA Interest Group (SVDIG). It records many of the thoughts that surfaced during the
meeting about the kinds of decisions you need to make when starting a DITA project. Those thoughts
combined nicely with information gathered in conjunction with the lead DITA architect for JavaSE docs,
Sowmya Kannan. In the process, we leaned heavily on information gleaned from Alfresco's documentation
manager, Briana Wherry, and her lead architect, Janys Kobernick.

Contents

• Introduction
• Using Conditionals
• Using Composition
• Comparing the Two Strategies
• A Hybrid Alternative
• Compound Conditions
• Simulating Metadata Hierarchy
• Improving the Review Process
• Automating the Composition Process

Introduction
The goal is to reuse a topic in different settings, where the topic has only minor differences in each setting.
There are two strategies you can use to achieve that goal:

• Conditionals: Tag elements with conditional metadata.
• Composition:

• Conref all 'conditional' elements from a definition file.
• Substitute a different definition file at production time, which means that the conrefs are, in

effect, variables.

I became intrigued in the subject of composition after hearing from people on the DITA-user mailing list.
People who use it swore by it, considering conditionals as "old school" and "archaic". Those messages
simply begged the question, "What's so good about composition?"

This article describes the two approaches, contrasts them, and attempts to answer that question.

MetaNote:
This article provides a basic template for a decision guide--an introduction that lists the choices,
explanations that describe the options, and a section that compares the advantages and
disadvantages of each choice, optionally followed by an explanation of "hybrid" alternatives that
provide some combination of the advantages and disadvantages of the individual options. (In the
last article of this series, I intend to to explore the possibility of a decision-guide specialization
for DITA.) Of the remaining sections of this article, some should be subheads of the composition
section, and others should be independent topics that expand on entries in the comparision table.
But the luxury of the article format is that I'm free to take liberties with the template, both for
readability and for improved authoring speed--especially since that template hasn't been fully
defined, as yet.)

Using Conditionals
Here's an example of a task step with conditionals:

 <step><cmd>Go to the installation directory at
 <ph platform="solaris">/opt/product</ph>
 <ph platform="linux">/usr/product</ph>
 <ph platform="windows">C:\Program Files\product</ph>.
 </cmd>
 </step>

The good news when you're reviewing this topic is that everything is right there in front of you. The bad
news is that when you need to make a change, you need to find all such occurences, scattered throughout
your topic set. And while you may know the location for one of the entries (say, the Solaris location), you
may not not have values for the other two, which leaves unknowns scattered throughout your topics.

Using Composition
Here is an example of the same task step, using composition

 <step><cmd>Go to the installation directory at
 <ph conref="metadata_platform.dita#install_dir"/>.
 </cmd>
 </step>

It easier to see the punctuation and spacing here. With conditionals, it's harder to make sure you've got those
details right.

Composition works by substituting different files for metadata_platform.dita, all of which have an
element in them that has the ID install_dir.

In this case, there would be 4 files. When writing, metadata_platform.dita would be a synonym for
the variables file:

 metadata_platform_variables.dita
 <ph id="install_dir">Installation Directory</ph>

(The synonym would be created using a symlink or by renaming files, depending on operating system
characteristics.)

The writer then sees "Installation Directory" in the text (highlighted as a conref). They don't even need to

know the location at that time, they just need a variable to transclude at that point in the text.

At production time, one of the values file is substituted to provide the appropriate text:

 metadata_platform_solaris.dita
 <ph id="install_dir">/opt/product</ph>

 metadata_platform_linux.dita
 <ph id="install_dir">/usr/product</ph>

 metadata_platform_windows.dita
 <ph id="install_dir">C:\Program Files\product</ph>

Notes:

• A definition file is generally a generic topic, so you can put anything in it. (Anything with an ID is a
"variable".)

• Anything that doesn't have grammatical variations, like a file path, can be in a <ph> element by
itself. But anything that has grammatical variations (like product name) should be a complete
sentence in a <ph> element, because only complete sentences translate well. (Even in English, when
the plurality or part of speech changes, the change wreaks havoc on posessives and sentence
structure.)

• When the specifics aren't yet known, values files can be populated with something like this:
 <ph id="install_dir">__NOT YET KNOWN__</ph>

The values file then provides a checklist of important information that needs to be determined.

• In general, you will have one file set per metadata dimension--one for the variables and one for each
of the possible values. You can then create combinations of metadata by varying the set of values files
you supply.

For example, these two files would be used to create the JDK installation instructions for Solaris:
 metadata_platform_solaris.dita
 metadata_product_jdk.dita

• To be clear about the terminology I'm using, a definition file is either a variable file, or a values file. In
this article, I use the term values file to mean, "a definition file that substitutes a set of values for a set
of variables". But that choice overloads the term "values file", which also refers to a .ditaval file,
in DITA. To disambiguate the term, I propose to call a .ditaval file what it really is: a control file.

That nomenclature has the advantage of maximum accuracy,because the prototypical definition of a
"process" is something that has inputs, outputs, and controls--and the .ditaval file certainly acts as
a process control. In addition, in a suitably clever implementation of the production system, the
control file can be used to automatically select the values files to use during the production run. (That
subject is covered in the final section of this article.)

Comparing the Two Strategies
Originally, the idea of using conditionals seemed like a "no brainer" decision. But after more reflection, I
realized that with composition, there is no need to extend the metadata attribute set, no need to worry about
metadata hierarchies, and no need to worry about boolean combinations of metadata. So after a closer
inspection, composition seemed to have a lot going for it. The table below summarizes the differences I have
been able to discern between the two approaches.

Characteristic Conditionals Composition

Authoring

All variations exist side by side, so they are
easily compared, but multiple variations
make a topic harder to read. Readability
requires a sophisticated editor that does
smart color coding.

There is only ever one conref'd value in a topic,
so the topic is easier to read. But it's harder to
be sure that all values are correct by inspection,
as topics and definition files are authored
separately.

Review

Possible to create a version for review that
shows all conditional variants--but
identifying variants is more difficult
(metadata values need to be displayed).

Must review all variants of final publications to
ensure accuracy. (But a tool can be constructed
to improve reviews. More on that subject
coming up later.)

Version-based
differences

Processing mechanisms for version-
numbered conditionals let you select for all
"version 6 and later" content.

No equivalent capability using composition.

Metadata
Design

Metadata needs to be designed correctly at
the outset to minimize the need for change.

Anywhere metadata would have been used, a
variable is created. Different substitution-sets
(definition files) are created to reflect different
combinations of (virtual) "metadata". So you
have one set of files for platform-specific
values, one set for browser-specific values, etc.

Metadata
Change

When metadata changes, elements tagged
with old metadata values need to be
modified to use the new tags. If old
conditionals remain in the topics, the content
they tag may be quietly ignored or
erroneously included.

Most changes restricted to definition files,
without ever changing the source text. When
the need for new varaibles surfaces, existing
text can be replaced with conrefs. If the change
is such that values files need to be reorganized,
then references to old files or old variables will
break, which helps to ensure that output is
valid.

New
Metadata
Values

If a new platform needs to be supported (say,
a Mac), then all places where text is tagged
with "platform=X" must be found, and a
new variant of the text added for
"platform=mac". (Locations are naturally
scattered through the doc set, and can be
found only with a sophisticated metadata
search.)

If a new platform needs to be supported, you
make a copy of the closest definition file, and
modify the text for all affected variables--all of
which are available in the one file.

Content
Maintenance

When values change in the next release (say,
the platform-specific names of installation
files), then you have to find all text that
refers to them and make the appropriate
changes. If they are buried in multiple
topics, it can be easy to overlook some.

Having all values in one file makes them easier
to change. It also gives you a checklist, so you
know when have gotten all the information you
need to produce the next version.

Compound
(boolean)
Metadata

Conditional metadata does not support
boolean combinations (e.g.
platform=windows and browser=firefox).

Can simulate boolean logic using compound
condition files (more on that subject, later on).

Metadata
Hierarchy

Standard metadata lacks hierarchy, but it can
be simulated.

Some situations can be readily simulated, but
others cannot (more later).

Training

Writers need to understand the metadata
model to tag things correctly. They need to
understand the metadata hierarchy,
understand inclusion vs. exclusion, and
know what substitutions to use for boolean
combinations.
--taken from Andrea Leszek's slides

Writers need to know location of definition file
and need to know when to reference it in lieu of
writing text.

Production
Create a single ditaval file for each
combination of metadata attributes you need.
Specify that file when doing production.

Specify a different set of definition files you
need for each combination of metadata--a
process which is more prone to error, unless
you automate the scripts (more later).

Semantic
Web
and
Automation

DITA-OT has been enhanced to allow
metadata to "pass through" as class
attributes, which produces HTML microtags.
(Generally called "microformats"--a
designation that fosters the misconception
that the added attributes are somehow
related to presentation format, and which
doesn't reflect their true value as semantic
tags.)

Joe Gelb comments: With composition, you can
develop processes (which may even be
automated) for composing chunks of
information into deliverables as well as use
tools for indexing and fielded search for online
libraries or knowledge bases. It also gives the
possibility of interoperating with standards and
technologies being developed for the semantic
web.

Table: Comparison of Conditionals and Composition.

http://www.x-pubs.com/site/program_detail/344/
http://thecontentwrangler.ning.com/profile/JoeGelb

A Hybrid Alternative
Upon reviewing the original version of the comparison table above, IBM's Megan Bock offered this
alternative:

"Use conditional metadata for topicrefs in maps, but use composition in topics,
so there are no embedded conditionals in your topics."

With that strategy, you would still need to create specialized metadata, which negates some of composition's
advantages. But you are left with maps that are more readable, since they don't contain references to "a topic
or sub-map to be named at a later date". So the advantage is that your maps are less abstract and less
complex. The disadvantage is that you still have to define the metadata, you just use it less.

There is one more significant advantage for this approach:

Conditionals let you solve the one kind of problem that composition can't touch:
The problem of multiple locations.

Consider this real-world example. The outline below comes from a map for an installation guide that covers
both the Java Development Kit (JDK) and Java Runtime Environment (JRE). There is only one way to install
the 64-bit supplement for the Java Runtime Environment (with an executable), but there are two ways to
install it for the JDK, depending on how the JDK was installed. The same topic is therefore referenced in two
different locations. In one location, it is nested. In the other, it isn't:

...
JRE: Installing the 64-bit Supplement (executable)
JDK: Installation Options
 Installing the 64-bit Supplement (executable)
 Installing the 64-bit Supplement (packages)
...

Here, the same topic is used in two different locations. Conditionals solved that problem handily.

Of course , it may be that you don't really need conditionalized maps. It's quite possible to create a different
map for each deliverable you intend to produce. You give up some of the advantages of single-sourcing, but
you do so only at a very high level, where it doesn't hurt very much.

This is an area that needs a razor--a way to decide between the two approaches. Conditionals in topics
certainly appear to be more trouble than their worth, but when does it make sense to use them in maps, and
when does it make more sense to create duplicate maps? (In the example above, there were about a dozen
topics in the map, so it didn't seem to make sense to have two copies.)

Compound Conditions
Most of the time, one file per metadata dimension will be sufficient. So you might have sets of files like this:

• metadata_platform_variables.dita
• metadata_platform_solaris.dita
• metadata_platform_linux.dita

...
• metadata_browser_variables.dita
• metadata_browser_firefox.dita
• metadata_browser_opera.dita

...

Then, at production time, you do the substitutions to create the document appropriate for FireFox users on
Linux, for example.

But every once in a while, you may find that you some boolean combination of metadata--a compound
condition--where, for example, the substitution value for Solaris and Firefox differs from the value for
Solaris and Opera.

Conditionals don't allow for that kind of capability, but composition does. To get that behavior, you would
create a set of dual-dimension files like these:

• metadata_platform_browser_variables.dita
• metadata_platform_browser_windows_firefox.dita

...etc...

Authors would then need to know to look for some variables in the dual-dimension file, rather than in one of
the single-dimension files.

Simulating Metadata Hierarchy
Ideally, it would be nice to have hierarchical metadata that looks like this: solaris, solaris:32, and
solaris:64
where:

• Content elements are tagged with one of the three
• When producing a document for 32-bit Solaris, solaris:32 is specified, but all items tagged
solaris are automatically included.

• When producing a generic Solaris document, solaris is specified, and all items tagged
solaris:32 and solaris:64 are included.

With conditional metadata, the closest we can come is to create metadata that looks like this: solaris,
solaris_32, solaris_64. It looks similar, but it's not actually a hiearchy. Then:

• To keep authoring simple, content elements are tagged with one of the three, as before.
• When producing a document for 32-bit Solaris, both solaris and solaris_32 are specified for

inclusion.
• When producing a generic Solaris document, solaris, solaris_32, and solaris_64 are all

specified.

It's not exactly the same as a true hierarchy, but it works pretty much the same. The authoring task is no more
difficult than it was before and as long as you get the production scripts right, you get the expected results.

With composition, the effect is somewhat harder to achieve--and some things can't be done at all. Imagine a
topic that looks like this:

<step><cmd>Go to the installation directory at
 <ph conref="metadata_platform.dita#install_dir"/>.
 </cmd>
</step>

<step conref="metadata_platform.dita#install_additional_64_bit_package"/>

<step>
 <cmd conref="metadata_platform.dita#platform_specifc_install"/>
</step>

The idea is for that middle step to be included when you're doing a 64-bit install, but to be left out for a 32-bit
install. That's easily done with conditionals. But it won't work with composition. To resolve the reference,
you'll have to include an empty step, which won't read very well. So the best you could do here would be to
create a step that says "Install additional packages, if any", and then include the phrase "No additional
packages". It's ugly, but it would solve the problem, more or less. The alternatives are to structure restructure
things so that the additional installation step is in a topic of it's own (so the conditionals are confined to the
map, as in the hybrid alternative), or else consider the situation an exception in which in-topic conditionals
are required.

The situation represented by the third step can be handled with greater accuracy, but it still takes a bit of
work. The idea is that the nature of the third step depends on whether you are doing a 32-bit or a 64-bit
install. So your file substitution-set could look like this:

• metadata_platform_variables.dita
• metadata_platform_solaris_32.dita
• metadata_platform_solaris_64.dita

With that implementation, common solaris values would be duplicated in the two values files. Of couse,
if you had your heart set on avoiding duplication, it would be possible to do so. You would have the same
variables file, and then divide the values into files for solaris, solaris_32, and solaris_64. You
would then manufacture the substitution-file at production time by combining the values in the solaris
file with the values from one of the other two files. (In practical terms, that's a lot of additional effort for
results that are more difficult to predict. Iin most every case, it will make more sense to live with the
duplication in return for a single, easily-reviewed values file. But it's an interesting thought-experiment to
imagine how the problem could be solved, if you needed to.)

Improving the Review Process
The goal is to display all possible values of a conref, to provide the same kind of review capability for topic
composition that you get with conditional metadata (the ability to see all possible values in one place). To do
that, we can use the DITA-OT to generate an output that shows all possibles values for each conref, tagged
with the metadata that produces it.

In the three platform example given above, the copy published for review would look like this:

 1. Go to the installation directory at
 solaris: /opt/product
 linux: /usr/product
 windows: C:\Program Files\product.

To produce that kind of output, we need to combine all elements with the same ID from multiple values files
into a single <ph> element, coupled with an identifer (solaris, linux, etc.) for each value. Substituting that
file at production time displays all possible values, nullifying the advantage that conditionals would
otherwise have in this area.

Here is an outline of the procedure:

• Given a file named metadata_platform_variables.dita:
• Start a new file called metadata_platform_tagged_values.dita
• For each <ph> element in the variables file with an ID, add to a new <ph> element to the

target file that looks like this:
 <ph id="xyz">
 </ph>
where the ID is the same as the ID in the variables file

• For all files named metadata_platform_*.dita:
• Extract the metadata METADATA_VALUE from the name of the file (represented by the

wildcard, "*").
• For each <ph> element with an ID in the file

• Extract the CONTENT from the element
• Add the tagged value to the <ph> element in the tagged_values file:

 <ph id="xyz">
 <! break !> #{METADATA_VALUE}: #{CONTENT}
 </ph>
where:

• The processing instruction identifies a place to create a line break
• "#{X}" is the Ruby syntax for string interpolation. It says to insert the value of

variable X into the string.

• To produce a copy for review:
• Generate HTML, substituting metadata_platform_tagged_values.dita in the

processing stream
• Convert the processing instructions to
 tags in post-processing.

Automating the Composition Process
If multiple values files need to be substituted at production time, it makes sense to automate the process. That
way, you can ensure that the correct files are substituted every time you produce a given deliverable.

In an ANT script, the substitutions could be made at the start of a task. When invoking the OT from the
command line, a wrapper script can be created that does the substitutions before invoking the OT.

In either case, the substitutions need to match the data specified in the .ditaval file that drives the
production (if there is one). It would even be possible to create the substitution set by examining the
.ditaval file.

To do that, it's necessary to have a naming convention for the values files. Using the naming conventions
described in this article, the process would need to:

1. Examine ditaval file, extracting the metadata property name and associated value for all entries that
specify "include"

2. Look for the corresponding metadata files.
3. Do the appropriate renames.

Given this .ditaval specification:

<val>
 <prop att="platform" val="opensolaris" action="include"/>
 <prop att="browser" val="firefox" action="include"/>
</val>

The script would substitute files of the form metadata_<property>_<value> for each entry. So it
would look for metadata_platform_solaris.dita and
metadata_browser_firefox.dita.

Although it is somewhat more difficult to do so, the script also need look for compound metadata files of the
form metadata_<property1>_<property2>_<value1>_<value2>.dita. In this case, it might
need to substitute a file named metadata_platform_browser_opensolaris_firefox.dita

Of course, while t hat level of automation is interesting to contemplate, it is probably overkill in nearly every
case. A few lines in a script or ANT task that does the substitutions is all that is really necessary, most of the
time.

	Conditionals vs. Composition
	Contents
	Introduction
	Using Conditionals
	Using Composition
	Comparing the Two Strategies
	A Hybrid Alternative
	Compound Conditions
	Simulating Metadata Hierarchy
	Improving the Review Process
	Automating the Composition Process

